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Modeling of the Reorientation Behavior of a Single Crystalline 
Shape-Memory Alloy by a Micromechanical Approach 

Byeong Choon Goo* 
(Received July 29, 1998) 

A Helmholtz free energy for a martensitic transformation of a single crystalline shape-memory 

alloy is obtained by a micromechanical approach. 24 variants of the single crystal are taken into 

account. In the framework of irreversible thermodynamics, a kinetic relation, a martensitic 

nucleation criterion and the reorientation criterion of martensitic variants are obtained. These 

relations are valid for a three-dimensional  proport ional  or non-propor t ional  mechanical 

loading or a combination of mechanical and thermal loading. Reorientation behavior of a single 

crystalline shape-memory alloy CuZnA1 is simulated. When a tensile load is applied to a 

thermally-induced martensite, 24 self-accommodated martensitic variants are reoriented to the 

most favorable variant. In the following unloading and compression load, the most favorable 

variant in the tensile load is reoriented to the most favorable variant in this loading condition. 

Key Words : Irreversible Thermodynamics, Martensitic Variants, Reorientation, Shape Mem- 

ory Alloy, Single Crystal 

I. Introduction 

Martensitic phase transformations attract a lot 

of interest and many phenomena have been dis- 

cussed and explained in the domain of  material 

science. In the light of modeling the behavior of 

shape memory alloys (SMA),  we can classify 

several existing models among others in three 

groups: (a) models based on a non-convex free 

energy (Ericksen, 1975; Falk, 1980; MUller and 

Xu, 1991) to describe one-dimensional  isother- 

mal pseudo-elastic (super-elastic) behavior and 

hysteresis phenomenon; (b) phenomenological 

three-dimensional models based on irreversible 

thermodynamics (Bondaryev and Wayman, 1988; 

Graesser and Cozzarelli,  1994) to study pseudo 

-elastic behavior or reorientation process and (c) 

micromechanical models of  single crystals 

(Patoor et al., 1987; Sun and Hwang, 1993a, b; 

Goo and Lexcellent, 1997). 

When martensite is thermally induced from 
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austenite, self-accommodated martensitic variants 

are created. The number of the created variants 

depends on the materials. In case of CuZnAI,  24 

martensitic variants of 6 groups of self-accom- 

modated 4 variants are created. When a tensile 

load is applied to a thermally-induced 24 marten- 

sitic variants, 3 variants of each group is reorient- 

ed to the most favorable variant of the group. 

Finally the 6 most favorable variants of  6 groups 

are reoriented to the most favorable variant with 

respect to the loading (Sabury et al., 1980). The 

reorientation behavior is well described experi- 

mentally but it is difficult to find a model to 

simulate the reorientation behavior. In this paper 

a model to simulate pseudoelastic behavior and 

reorientation behavior is proposed. 

2. Kinematic Relation of Phase  
Transformation 

High temperature phase is designated by aus- 

tenite, and low temperature phase by martensite. 

Suppose that two phases have the same Young 

modulus E,  Poisson ratio u and density p. As 

internal variables, we choose the volume fraction 
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D, 
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Fig. 1 Simple shear on the habit plane plus an 

extension in the direction of the habit plane 
normal. Austenite ABCD is transformed into 
martensite ABC'D'. 

of each martensitic variant f~ (s = 1, ---, N) where 

N is the total number of variants, fs is defined as 

fs-" V s / V  where V~ is the volume of variant s. V 

is the total volume of representative element in 

study. A variant can be considered to be located 

in infinite matrix, so solutions obtained in the 

infinite domain will be applied to this representa- 

tive element. 

According to the phenomenological theory of 

phase transformation by W. L. R. (Weshsler et 
al., 1953), the phase transformation of a variant 

s gives a strain eft in the variant as follows : 

p 1 
s ~ = g R ~ = ~ g ( e , |  (1) 

where e~ is the unit vector in the direction of the 

displacement of phase transformation, n~ is the 

normal vector to the habit plane, g is the material 

constant (Fig. 1) and R.~ is the orientation tensor 

of  the variant s. 
A martensitic variant is defined by the total 

quantity of martensite with the same e~ and he. 
The symbol @ denotes dyadic product. All  

vectors and tensors have the same Cartesian refer- 

ence system fixed in the laboratory. Under the 

assumption of infinitesimal deformation, the total 

global  strain E is decomposed into elastic strain 

E e and phase transfbrmation strain E p. We do 

not consider the irreversible plastic deformation 

due to slip. The global strain E is obtained by the 

volume average of local strains s of all variants: 

E = E e + E p = ( E e ) v + ( C > v = M  : 

N 

Z + f (EP>v,,=M " ,S + g .~ l f iR  s (2) 

where ( >, M and f represent the volume aver- 

age, the elastic compliance tensor and the total 

volume fraction of martensite, respectively. Z is 

the global stress tensor and VM is the volume of  

the martensite. Thc notation : between two ten- 

sors denotes the contracted tensor product (A : 

B=A~mB~zm~, A : C=Aok~Ck~ in conventional 
index notation).  If we take into account the ther- 

mal dilatation, Eq. (2) is written as: 

N 

E = M  : X + g ~ . _ f ~ R ~ + a ( T - T , . ) J  (3) 
8 = I  

where J is the unit tensor of order 2, Tr is the 

reference temperature, and a is the thermal dilata- 

tion coefficient of both phases. 

3. Helmholtz Free Energy 

When ellipsoidal martensitic variants are 

produced in the austenite, there are several 

energies from different origins, lnterfhce energy 

W "~'~r: per unit mass is expressed by: 

W~,r:. = 7S (4) 
p V  

where 7. is the surface energy per unit area and S 

is the total area of interface between martensite 

and austenite, The value of ), depends greatly on 

the coherency strain along the austenite-marten- 

site interface. Assuming the interface involves 

Frank dislocation loops, y is estimated to be the 

order of (5.04--10.8) X 10 -s J /cm 2 (Funakubo,  

1987). Conventionally this energy is neglected in 

SMA but we will keep this term in our general 

expression. According to the experimental obser- 

vation of" interface (Huo and MUller, 1993) in 

case of a uniaxial tensile test, the number of 

interfaces n is maximum near f = 0 . 5 ,  and can be 

expressed approximately by: 

~z= my(1  - - f )  (5) 

where no is a constant. Assuming the interl;ace 

area is proportional to the number of interfaces, 

the interface energy per unit mass can be expres- 

sed by: 

W,~ur:=. 1 A f ( l _ f  ) O V 7bnof (1 - f )  .= 
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A N N 
. . . . .  ( Z f ~ )  (1-- Z f~)  (6) 

p s = l  s = l  

where A = 7bno/V is the material constant. 

When an ell ipsoidal martensitic plate is 

produced in the austenite, due to the incompati- 

bility of deformations between the variant and its 

matrix, internal stress takes place. The stress in 

the plate is given by the Eshelby's solution 

(Eshelby, 1957). But when there are many plates 

or many variants, because of interactions among 

them, we can not directly use the Eshelby's solu- 

tion. When inclusions are randomly distributed in 

the matrix, average internal stress was obtained 

(Mori and Tanaka,  1973). In most SMA, a kind 

of variant is not distributed throughout a speci- 

men, and double twins (corresponding to double 

slip in plasticity) are not observed. Thus, when a 

kind of variant is produced in a domain, other 

kinds of variants are produced in other domains. 

In this situation, we can not use the concept of 

Mori and Tanaka (Mori and Tanaka,  1973). We 

obtain the average internal stress by the self 

-consistent formula of K. B. W. (Kroner, 1961; 

Budiansky and Wu, 1962). Suppose that all plates 

of a variant have the same form of oblate sphe- 

roid with a~=a2, a J a S < l ,  where a~, a2 and aa 

are the principal radii, a~ and az are on the habit 

plane, and a:~ coincides with the direction of ns. 
According to K. B. W., the difference in strains 

between the oblate spheroid and its matrix is 

considered as an eigenstrain (stress-free strain) in 

the sense of Eshelby. Internal stress a~ in the 

variant s can thus be obtained from the Eshelby' 

s solution: 

d ~ = L "  ( S , ~ - I )  " ( r  �9 
N 

~ P  �9 �9 ( s ~ - I )  " ( ~ i - Z / ~  t ) = L  ( S s - I )  
t = l  

N 

e ~ -  L " ( S ~ -  I )  " '~.fte~ (7) 
t = l  

where L is the elastic stiffness tensor, and S~ is 

the Eshelby tensor of  order 4 of the variant s. The 

unit tensor I of order 4 is expressed by the 

Kronecker's symbol given by 

I 1 ~q =2- (~kp3~ + #k~8~p) (8) 

When there is only one kind of variant s, the 

obtained internal stress 0", is the same as that 

obtained by Mori  and Tanaka  (1973) as follows : 

a s =  (1 - i s )  L " ( S s - l )  " v~ (9) 

The stored energy W ~ per unit mass by the 

internal stress o's is obtained (Mura, 1987): 

1 W ent- f v Z e ~ "  a M V  
2 p V  s=l 

1 N 
-- ~- Z f~r  L "  ( S . ~ - I )  " 

zps=x 
p 1 g N .  P ,  , . 

E.+UdEEiZ, es L ( S s - l )  ~ (10) 
~) l=18=1 

Let : 

1 p 
W,~=-~-r  " L "  ( S s - I )  " r 

and 

1 p ,  , 
W ~ t = - T E s  L ( S s - - I )  e~ 

then Eq. (10) is written as: 

( l l )  

os:, -s l w , - J - z N / z ,  ws, 
p = = 

t@8  

(13) 

The first term on the r ight-hand of Eq. (13) 

represents the stored energy by the internal stress 

of the variant s itself. On the other hand, the 

second term is the stored energy due to the inter- 

action among variants. The strain energy W ~xt by 

the external loading is obtained by: 

W S X t = + E ~ "  L "  E ~ 

-- l [ E - g  f~=/~R~- ' 'a (T-  T r ) J ]  " 

L " [ E - g ~ / ~ R ~ - a (  T -  T r ) J ]  (14) 

where L, p, a, g and Rs are assumed to be 

independent of  temperature. The specific heat at 

constant volume c is defined as: 

32#r o~t0 "~ 
c = - 7 " O T  2 -  T 9 T  2 (15) 

Assuming the specific heat c is constant, we 

obtain the free energy per unit volume depending 

on temperature by integrating Eq. (15). For  the 

austenitic phase it is written as: 

~ f = - c a T L o g ( T ) + C ~ T + C ~  (16) 

where CA is the specific heat of the austenitic 

(12) 
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phase. C A and C# are constants. For  the marten- 

sitic phase it is expressed by: 

g r / s ' . - - c M T L o g - ( T ) + C M T + C  f (17) 

where Cu is the specific heat of the martensitic 

phase. C M and C f are constants. Hence for the 

two-phase state it is written as: 

ge~ = (1 - f )  gtd'+ f f F r =  - CA T L o g  (7") 

+ Cr T + C A + / C  * ( T " -  To) + f  (cM - cA) 
[ ToLog (To) - TLog  ( T )  ] (18) 

where 7]) is the thermal equilibrium temperature 

defined as tFf(2},)=gr] ' (T0) and C * = ( C y  

- c A ) .  Therefore, the specific Helmholtz free 

energy of the representative element is written as 

follows: 

~..- W~'~ + W~,~ + Ws~+ + ~ "  

= ~ - - . E - - g N f ~ R ~ - e (  T -  "17)J i 

Lp L ~=x 

L "  E - g ~ / s R . ~ - a ( T -  T~)J  

] N N N 

: 

t ~ 8  

+--A- ( ~ f 8  ) (1 -- ~ f~ )  - c A T L o g ( T )  
p 8=1 8=1 

-~- C~ T + CzA i fC* ( T - To) + f ( c,~, -- CA) 
L ToLog(To) .... T L o g ( T )  ] (19) 

For  the sake of simplicity, we suppose all plates 

of all variants have the same aspect ratio f l=aa/  
a,. In that case, Ws is a constant independent of 

variant kinds. In addition, the diffcrence in the 

specific heat between two phases will be neglected 

(c--C*=CM) because it is difficult to find experi- 

mental values. 
Global stresses are obtained from the following 

relation (Lemaitre and Chaboche, 1985): 

- a ( r - , -  T~)J]  (20) 

Thermodynamic forces F~ associated with the 

variables f~ are defined as: 

t s :  ..... f ~ = g R s  " L "  L E - g ~ f * R :  
J ~  

- a ( T -  T~)J  - (1--2fs) I G +  232.ftW, g 
t = l  
t#=8 

- A ( 1 - 2 S ~ )  - pC* ( T -  To) (21) 

l 
where W.;'~ ~: 2 ( Ws~ + Wts) is symmetric on s and 

t. The Clausius-Duhem inequality is written as 

follows (Lemaitre and Chaboche, 1985): 

Ns~:lFs./s-@gradT ~O (22) 

where q is the heat flux vector. We suppose each 

term in Eq. (22) satisfies the inequality: 

N 

ZFs . /8>O ; .... q~-gradT>O (23) 
8=1 

The heat equation is written as follows (Lemaitre 

and Chaboche, 1985): 

" r F  a Z  " p c ' T - k V 2 T - -  ~2FsS~+ L ~ T  

J 
where k is thermal conductivity and V 2 denotes 

the Laplacian operator. When the thermal dilata- 

tion term, a ( T - T r ) ,  is negligible, Eq. (24) is 

written as: 

N N 

v c T -  kV" T = E Fs./~ + p TC* ( E ./8) 
8=1 8ml 

(25) 

4. Const i tut ive  Equat ions  

The variation of the volume fraction of a vari- 

ant s is due to two origins. One is the martensitic 

transformation and the other is the reorientation 

of martensitic variants. Hence the variation rate 

of the volume fraction of the variant s can be 

written as (Goo and Lexcellent, 1997): 

/ , = 7 8 0 + ? . , 1 +  ....  + L .8+ ,+ . - -  
+ ]8,~, s = 1, ..., N (26) 

where ./so represents the rate of variation by the 

phase transformation; ./~0>0 designates the for- 

ward transformation, and ./8o<0 the reverse 

t ransformat ion. . /s , t  represents the variation rate 

off~ by the reorientation from a variant t ( t#:s)  
to the variant s. If  ./s.t >0,  some of the variant t 

is in the course of reorientation to the variant s. 

If ./~,, <0,  some of the variant s is in the course 

of reorientation to the variant t. Thus it follows 

that 
(27) 
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In phase transformations, dissipation results from 

frictions on interfaces, defects, plastic deforma- 

tions, thermal dissipation, etc..  We suppose in the 

reorientation process, creep phenomenon is negli- 

gible. Of course, latent heat does not exist in this 

process. So we distinguish the dissipation of 

phase transformation from that of reorientation 

process. The dissipation rate of the phase transfor- 

mation l/Vd ~ is supposed to be a simple function 

of the thermodynamic force Fs : 

N 

l ~  r = + X/~0F~( + (P% - DI~ )) >" (28) 
,~=1 

where /~0 and n are constants, and (i) represents 

the forward transformation when i = I ,  or the 

reverse transformation when i = 2 .  + o f  _+ desig- 

nates the forward transformation, and the reverse 

transformation. The dissipation of a variant is 

supposed independent of other variants. A func- 

tion ( H ( x ) >  is defined by: 

( H  (x) > = H  (x) ,  if H (x) >0 ; < H ( x ) ) = 0 ,  

else (29) 

D~r ) can be written in a general form: 

DI~ > = D~') + D~ z) (fs) (30) 

where D~t ~) is constant and D~>(fs) is the harden- 
ing term. The dissipation rate l/r ~ due to the 

reorientation is supposed to be a simple function 

o f / , , , ~  : 

�9 l N /V �9 
r e _ _  ( i )  Wd - T ~ .  ~.D~, U~t (31) 

s = l t = l  

where D(~ ) is written in a general form: 

D(r~)= D.~') + DI ') (fs) (32) 

where D:/> is constant and Dg>(f~) is the harden- 

ing term. i =  1 represents the reorientation from t 

to s ; i = 2  the reorientation from s to t. So we 

obtain a relation from the equations of mechani- 

cal dissipation (Eqs. (28) and (31)): 

N N 

5"2. F~/.~ = -4- ; ioE F~< _+ (F~ - DI~ )) >" 
8=I 8=I 

N N 
+ 1 ~  ~ n ( 1 )  r (33) 

~ ~ J r ~  j N ,  t 
2 ~ = l t = l  

t=~8 

Inserting Eqs. (26) and (27) in (33), we obtain 

the following equation: 

1 N N ( i )  
+ -ys~=~ ( F , -  F t -  Dre ) / 8 4 = 0  (34) 

t~p$ 

This equation can be satisfied for a trivial case F~ 

= 0  (no thermodynamic force) and f s . t=O (no 

reorientation process). For  the equation to be 

satisfied for any other cases of  F~#=0 and 2 Q , ~  

0, the two terms of the equation should be zero: 

? ~ =  + l]0<+ ( /<~-DI~)  >" (35) 

and 

yst = F~_  I~% _ D(g)= g ( R _ Rt)  �9 
N 5/ 

s + 2 '~. L W.C.- 2 E A W,*- Dg)=O. 
~ = 1  n = l  

(s ~ t) (36) 

Eq. (35) represents the evolution of the variant s 

in case of  phase transformation. Eq. (36) is the 

criterion of reorientation between the variants t 

and s, When }%t=0, some of  the variant t is in 

the course of reorientation to the variant s. In this 

case, js.~ is obtained from the following rela- 

tions: 

Y~, = / % -  F t  -J~r~ )=0  (37a) 
K 

~?s = f , 0 +  ~ f~., (37b) 
t:C-E 

M 

/ ,  = J~,0-- Z / m , t  (37c) 
m = l  
) n ~ t  

where K is the number of the variants in the 

course of reorientation to the variant s and M is 

the number of the variants to which the variant t 

is in the course of reorientation. Eq. (37a) is the 

consistency condition. 

5. Simulation of the Reorientation 
Behavior 

When austenite is transformed to martensite by 

cooling, 24 self-accommodated variants com- 

posed of 6 groups of 4 variants are created. 4 

variants of  each group are also self-accommodat- 

ed. According to the experimental observations 

(Sabury et al., 1980) when a tensile load is 

applied to the thermally-induced 24 martensitic 

variants, 3 variants of each group are reoriented 

to the most favorable variants of the group�9 In 

consequence the most favorable variants of each 

group is reoriented to the most favorable among 
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the 24 variants. Sometimes the most favorable 

variant of a group is reoriented to the most favor- 

able variant of its neighboring group and finally 

it is reoriented to the most favorable variant 

among the 24 variants. 

D ~  ) in the criterion of  reorientation is assumed 

to be a function of f~: 

D(r~)  = o mera +-D,~+/l(f~-f,'~ ) (38) 

80- 
70~ 

~" 60- 

~SO- 
~40- 

"~0- 

Fig. 2 

20- 

10- 

9o 

70 

~" 60 
, ~  

Strain (%) 

(a) 

'~ f / 
30 

20 

10 ~ _ . . _ _ ~ " ~  

strain (%) 

(b) 

(a) Reorientation behavior of 4 martensitic 
variants, (a], a2, o:~)= (30 ~ 30 ~ 30~ 

(b) Reorientation behavior of 24 martensitic 
variants, (a,, a2, a~)= (30 ~ 30 ~ 30~ 

where D ~ and ,~ are constants and f~,em is the 

volume fraction of  the variant s when the applied 

loading changes its loading direction. + of the + 

is for the reorientation from the variant t to s and 

- of the + is for the reorientation from the 

variant s to t. The consistency condition of reor- 

ientation (Eq. (37a)) between the variant s and 

t is written as: 

N 

]"8 ,=g(R.~-R , )  " 2  ' * 

N , 

- 2~=l / , ,W**-A f~=O.  s * t  (39/ 

Using Eqs. (37), (38) and (39), we can simu- 

late the behavior of reorientation of martensitic 

variants. Simulated results are shown in Figs. 2 

~ 5  and the used parametric values are shown in 

Table 1. (al, az, a3) are the angles between the 

applied tensile loading and the three axes of the 

single crystal, [1 0 0], [0 1 0], [0 0 1], respective- 

ly. The used habit plane normal directions ns and 

phase transformation directions e~ are near (2 7 

8} and (2 9 8} respectively (Patoor et al., 1987). 

Figure 2(a) shows the reorientation behavior 

of a self-accommodated group of 4 martensitic 

variants with (a~, a2, or3)= (30 ~ 30 ~ 30~ About  

7% of strain is obtained when 3 martensitic vari- 

ants are reoriented to the most favorable variant 

in the group. Figure 2 (b) shows the reorientation 

behavior of a self-accommodated 24 martensitic 

variants with (a~, a2, a3) = (30 ~ 30 ~ 30~ Figure 

3 (a) and 3 (b) show the reorientation behavior of 

a self-accommodated group of  4 variants and 24 

variants with (al, 0t2, a~)= (45 ~ 45 ~ 45~ The 

obtained strains are less than those of Fig. 2. That 

means the maximum strain obtained by the reor- 

ientation of martensitic variants depends much on 

the angles (el, a2, a:,). Figure 4 shows the reor- 

Table  1 Used values of the 9arameters for the simulation. 

in degree (MPa) v (MJ/mS) (MJ/m~) a3/al g 

Fig. 2 (30, 30, 30) 20000 0.3 1.0 1.0 10 -.6 0.206 

Fig. 3 (45, 45, 45) 20000 0.3 1.0 1.0 10 -6 0.206 

Fig. 4 (20, 20, 20) 20000 0.3 1.0 0.5 10 -6 0.206 

Fig. 5 (10, 20, 30) 20000 0.3 1.0 0.5 10 -~ 0.206 
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Fig. 5 Reorientation behavior of 24 martensitic 
variants, (al, a2, ~ ) =  (t0 ~ 20 ~ 30~ 

ientation of  a self-accommodated 4 martensitic 
variants with (aa, a2, as) ---' (20 ~ 20 ~ 20~ under a 
loading, unloading and reloading, Figure 5 shows 
the reorientation of a self-accommodated 24 
martensitic variants with (a~, az, a3)~-(10 ~ 20 ~ 

30~ under a loading, unloading and reloading. 
In case of 24 variants the curve is nearly continu- 

ous but in case of  4 variants the curve is stepwise. 

6. C o n c l u s i o n  

In the phase transformation of shape memory 
alloys, the simulation of reorientation of marten- 
sitic variants and two-way memory effect is not 
easy. The reorientation behavior of martensitic 
variants of  a single crystalline shape memory 

alloy was successfully simulated by a micro 

-mechanical approach. When a tensile load is 
applied to 24 martensitic variants, 23 variants are 
reoriented to the most favorable variant. This 
behavior is consistent with experimental observa- 
tion (Sabury et al., 1980). Under the compressive 
loading after unloading, the most favorable vari- 
ant under the tensile load is reoriented directly to 

the most favorable variant with respect to the 
compressive load. 

Using a self-consistent method, we can simu- 
late the reorientation behavior of  polycrystalline 
shape memory alloys. 
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